Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Arch Toxicol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703205

RESUMEN

Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.

2.
Environ Pollut ; : 124148, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735457

RESUMEN

Identifying the key influencing factors in soil available cadmium (Cd) is crucial for preventing the Cd accumulation in the food chain. However, current experimental methods and traditional prediction models for assessing available Cd are time-consuming and ineffective. In this study, machine learning (ML) models were developed to investigate the intricate interactions among soil properties, climate features, and available Cd, aiming to identify the key influencing factors. The optimal model was obtained through a combination of stratified sampling, Bayesian optimization, and 10-fold cross-validation. It was further explained through the utilization of permutation feature importance, 2D partial dependence plot, and 3D interaction plot. The findings revealed that pH, surface pressure, sensible heat net flux and organic matter content significantly influenced the Cd accumulation in the soil. By utilizing historical soil surveys and climate change data from China, this study predicted the spatial distribution trend of available Cd in the Chinese region, highlighting the primary areas with heightened Cd activity. These areas were primarily located in the eastern, southern, central, and northeastern China. This study introduces a novel methodology for comprehending the process of available Cd accumulation in soil. Furthermore, it provides recommendations and directions for the remediation and control of soil Cd pollution.

3.
Cell Death Dis ; 15(3): 220, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493165

RESUMEN

Pancreatic cancer is one of the most malignant tumor types and is characterized by high metastasis ability and a low survival rate. As a chromatin-binding protein, HMGA2 is widely overexpressed and considered an oncogene with various undefined regulatory mechanisms. Herein, we demonstrated that HMGA2 is highly expressed in pancreatic cancer tissues, mainly distributed in epithelial cells, and represents a subtype of high epithelial-mesenchymal transition. Deletion of HMGA2 inhibits tumor malignancy through cell proliferation, metastasis, and xenograft tumor growth in vivo. Moreover, HMGA2 enhanced the cellular redox status by inhibiting reactive oxygen species and promoting glutathione production. Importantly, ferroptotic cell death was significantly ameliorated in cells overexpressing HMGA2. Conversely, HMGA2 deletion exacerbated ferroptosis. Mechanistically, HMGA2 activated GPX4 expression through transcriptional and translational regulation. HMGA2 binds and promotes cis-element modification in the promoter region of the GPX4 gene by enhancing enhancer activity through increased H3K4 methylation and H3K27 acetylation. Furthermore, HMGA2 stimulated GPX4 protein synthesis via the mTORC1-4EBP1 and -S6K signaling axes. The overexpression of HMGA2 alleviated the decrease in GPX4 protein levels resulting from the pharmacologic inhibition of mTORC1. Conversely, compared with the control, HMGA2 deletion more strongly reduced the phosphorylation of 4EBP1 and S6K. A strong positive correlation between HMGA2 and GPX4 expression was confirmed using immunohistochemical staining. We also demonstrated that HMGA2 mitigated the sensitivity of cancer cells to combination treatment with a ferroptosis inducer and mTORC1 inhibition or gemcitabine. In summary, our results revealed a regulatory mechanism by which HMGA2 coordinates GPX4 expression and underscores the potential value of targeting HMGA2 in cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Ferroptosis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Neoplasias Pancreáticas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina
4.
Environ Sci Technol ; 58(13): 5739-5749, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38456395

RESUMEN

Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Embarazo , Recién Nacido , Femenino , Plastificantes , Meconio/metabolismo , Dietilhexil Ftalato/metabolismo , Dietilhexil Ftalato/toxicidad , Ácidos Ftálicos/metabolismo , Cabello/metabolismo , Organofosfatos , Biotransformación , Ésteres/metabolismo , Exposición a Riesgos Ambientales/análisis
5.
Anatol J Cardiol ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38327189

RESUMEN

BACKGROUND: Computed tomography (CT) image integration is of limited use in left ventricular (LV) ablation due to inadequate accuracy of registration. The current study aimed to investigate the accuracy and feasibility of extra-cavity LV image registration via the coronary cusp. METHODS: Consecutive patients were enrolled as the validation group (n = 41) and feasibility group (n = 48). After extra-cavity registration via the aortic root, the LV anatomy derived from CT image was activated and moved into real space. Accuracy of LV anatomy via this registration method was verified by intracardiac echocardiography reconstruction in the validation group and tested further in the feasibility group via measuring the location differences (<3 mm) and volume difference (<8 mL). RESULTS: In validation group, the LV volume of CT image and ICE map were comparable (113.6 ± 15.5 mL vs. 109.0 ± 15.3 mL, P =.27), and the location difference was 3.1 ± 1.1 mm at LV summit, 1.8 ± 0.9 mm at the free wall, and 1.8 ± 0.7 mm at the LV apex. There was a mean of 2.9 ± 1.2 mm and 3.0 ± 1.0 mm length difference in anterior PM and posterior PM, the position difference of the PM's base was 2.8 ± 0.9 mm for anterior PM and 2.2 ± 0.9 mm for posterior PM. In feasibility group, the distance differences of LV summit, LV septum, LV apex, and LV free averaged 1.8 ± 0.8 mm, 1.5 ± 0.7 mm, 1.4 ± 0.6 mm, 1.3 ± 0.7 mm, respectively. Compared with validation group, acute success (100% vs. 96.5%, P =.51), complications rate (4.9% vs. 2.0%, P = 0.59) and fluoroscopic time (1.6 ± 1.1 vs. 1.9 ± 1.6 minutes, P =.30) exhibited no significant difference, but was significantly reduced with procedure time (74.5 ± 8.1 vs. 61.2 ± 9.5 minutes, P <.001) with CT image registration only. CONCLUSION: LV mapping and ablation could be successfully achieved by extra-cavity registration via coronary cusp without needing positions within LV beforehand.

6.
Environ Geochem Health ; 46(3): 86, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367055

RESUMEN

Biochar adsorption of heavy metals has been a research hotspot, yet there has been limited reports on the effect of heavy metal interactions on adsorption efficiency in complex systems. In this study, the adsorbent was prepared by pyrolysis of rice straw loaded with manganese (BC-Mn). The interactions of Pb, Cd and As adsorption on BC-Mn were systematically studied. The results of the adsorption isotherms for the binary metal system revealed a competitive adsorption between Pb and Cd, resulting in decreased Pb (from 214.38 mg/g to 148.20 mg/g) and Cd (from 165.73 mg/g to 92.11 mg/g). A notable promotion occurred between As and Cd, showing an increase from 234.93 mg/g to 305.00 mg/g for As and 165.73 mg/g to 313.94 mg/g for Cd. In the ternary metal system, Pb inhibition did not counteract the promotion of Cd and As. Furthermore, the Langmuir isotherm effectively described BC-Mn's adsorption process in monometallic, binary, and ternary metal systems (R2 > 0.9294). Zeta and FTIR analyses revealed simultaneous competition between Pb and Cd for adsorption on BC-Mn's -OH sites. XPS analysis revealed that As adsorption by BC-Mn facilitated the conversion of MnO2 and MnO to MnOOH, resulting in increased hydroxyl radical production on BC-Mn's surface. Simultaneously, Cd combined with the adsorbed As to form ternary Cd-As-Mn complexes, which expedited the removal of Cd. These results help to provide theoretical support as well as technical support for the treatment of Pb-Cd-As contaminated wastewater.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes Químicos del Agua , Cadmio , Manganeso , Compuestos de Manganeso , Adsorción , Plomo , Óxidos , Carbón Orgánico
7.
BMC Cancer ; 24(1): 166, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308235

RESUMEN

Osteosarcoma (OS) is a highly malignant tumor, and its dysregulated lipid metabolism is associated with tumorigenesis and unfavorable prognosis. Interestingly, long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of lipid metabolism, exerting notable impacts on tumor proliferation. Nevertheless, the involvement of RPARP-AS1, a novel lipid metabolism-associated lncRNA, remains unexplored in the context of OS. This study aims to identify functionally relevant lncRNAs impacting OS proliferation and lipid metabolism and seeks to shed light on the upstream regulatory mechanisms governing lipogenic enzyme activity. Based on comprehensive bioinformatic analysis and the establishment of a risk model, we identified seven lncRNAs significantly associated with clinical characteristics and lipid metabolism-related genes in patients with OS. Among these, RPARP-AS1 was selected for in-depth investigation regarding its roles in OS proliferation and lipid metabolism. Experimental techniques including RT-qPCR, Western blot, cell viability assay, assessment, and quantification of free fatty acids (FFAs) and triglycerides (TGs) were utilized to elucidate the functional significance of RPARP-AS1 in OS cells and validate its effects on lipid metabolism. Manipulation of RPARP-AS1 expression via ectopic expression or siRNA-mediated knockdown led to alterations in epithelial-mesenchymal transition (EMT) and expression of apoptosis-associated proteins, thereby influencing OS cell proliferation and apoptosis. Mechanistically, RPARP-AS1 was found to augment the expression of key lipogenic enzymes (FABP4, MAGL, and SCD1) and potentially modulate the Akt/mTOR pathway, thereby contributing to lipid metabolism (involving alterations in FFA and TG levels) in OS cells. Collectively, our findings establish RPARP-AS1 as a novel oncogene in OS cells and suggest its role in fostering tumor growth through the enhancement of lipid metabolism.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metabolismo de los Lípidos/genética , Línea Celular Tumoral , MicroARNs/genética , Proliferación Celular/genética , Osteosarcoma/patología , Neoplasias Óseas/patología , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
8.
J Affect Disord ; 351: 259-267, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266932

RESUMEN

BACKGROUND: Previous neuroimaging studies have reported structural and functional brain abnormalities in major depressive disorder (MDD). This study aimed to explore whether the coherence of structural-functional networks was affected by disease and investigate its correlation with clinical manifestations. METHODS: The severity of symptoms and cognitive function of 121 MDD patients and 139 healthy controls (HC) were assessed, and imaging data, including diffusion tensor imaging, T1 structural magnetic resonance imaging (MRI) and resting-state functional MRI, were collected. Spearman correlation coefficients of Kullback-Leibler similarity (KLS), fiber number (FN), fractional anisotropy (FA) and functional connectivity (FC) were calculated as coupling coefficients. Double-weight median correlation analysis was conducted to investigate the correlations between differences in brain networks and clinical assessments. RESULTS: The percentage of total correct response of delayed matching to sample and the percentage of delayed correct response of pattern recognition memory was lower in MDD. Compared with the HC, KLS-FC coupling between the parietal lobe and subcortical area, FA-FC coupling between the temporal and parietal lobe, and FN-FC coupling in the frontal lobe was lower in MDD. Several correlations between structural-functional connectivity and clinical manifestations were identified. LIMITATIONS: First, our study lacks longitudinal follow-up data. Second, the sample size was relatively small. Moreover, we only used the Anatomical Automatic Labeling template to construct the brain network. Finally, the validation of the causal relationship of neuroimaging-behavior factors was still insufficient. CONCLUSIONS: The alternation in structural-functional coupling were related to clinical characterization and might be involved in the neuropathology of depression.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Imagen de Difusión Tensora , Encéfalo , Cognición/fisiología , Imagen por Resonancia Magnética/métodos
9.
Nucleic Acids Res ; 52(D1): D1010-D1017, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37791879

RESUMEN

Genome-wide association studies (GWAS) have identified numerous genetic variants associated with diseases and traits. However, the functional interpretation of these variants remains challenging. Expression quantitative trait loci (eQTLs) have been widely used to identify mutations linked to disease, yet they explain only 20-50% of disease-related variants. Single-cell eQTLs (sc-eQTLs) studies provide an immense opportunity to identify new disease risk genes with expanded eQTL scales and transcriptional regulation at a much finer resolution. However, there is no comprehensive database dedicated to single-cell eQTLs that users can use to search, analyse and visualize them. Therefore, we developed the scQTLbase (http://bioinfo.szbl.ac.cn/scQTLbase), the first integrated human sc-eQTLs portal, featuring 304 datasets spanning 57 cell types and 95 cell states. It contains ∼16 million SNPs significantly associated with cell-type/state gene expression and ∼0.69 million disease-associated sc-eQTLs from 3 333 traits/diseases. In addition, scQTLbase offers sc-eQTL search, gene expression visualization in UMAP plots, a genome browser, and colocalization visualization based on the GWAS dataset of interest. scQTLbase provides a one-stop portal for sc-eQTLs that will significantly advance the discovery of disease susceptibility genes.


Asunto(s)
Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
10.
Eur J Pharmacol ; 965: 176196, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38006926

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common chronic liver disease, but there are few specific medications for it. Lusianthridin, a major phenanthrene component that originates from Dendrobium Sonia, has various in vitro biological functions. In this study, we aimed to evaluate the therapeutic effects of lusianthridin on high-fat diet (HFD)-induced MAFLD as well as to examine the mechanism of its effects. We fed male mice high-fat-diet for 12 weeks to induce MAFLD and then continued to feed them, either with or without lusianthridin, for another six weeks. We found that lusianthridin decreased serum triacylglycerol, hepatic triacylglycerol, and serum low density lipoprotein cholesterol. It also reduced hepatic lipid accumulation based on the results of morphology analysis. Besides, it improved hepatic inflammation as well, including a decrease in serum alanine aminotransferase and a reduction in macrophage and neutrophil infiltration. Mechanistically, surface plasmon resonance, cell thermal shift assay and dual-luciferase report system results suggested that lusianthridin combined with farnesoid X receptor (FXR) ligand binding region and activated its transcriptional activity. Lusianthridin also decreased de no lipogenesis though inhibiting Srebp1c and downstream Scd-1, Lpin1 and Dgat2 expression in a FXR-dependent manner in oleic acid treated L02 cells. Correspondingly, lusianthridin inhibited Srebp1c and downstream lipogenesis in MAFLD liver tissues of mice at both of genetic and protein levels. Finally, the protective effects of lusianthridin on hepatic steaotosis were abolished in Fxr-/- mice. Taken together, our results suggested that lusianthridin attenuated high-fat-diet induced MAFLD via activation the FXR signaling pathway.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Fenantrenos , Masculino , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Receptores Citoplasmáticos y Nucleares/metabolismo , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenantrenos/farmacología , Triglicéridos , Transducción de Señal , Ratones Endogámicos C57BL , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/farmacología
11.
J Cell Mol Med ; 28(2): e18032, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013642

RESUMEN

Lung adenocarcinoma (LUAD) is the most common type of lung cancer and one of the malignancies with the highest incidence rate and mortality worldwide. Hypoxia is a typical feature of tumour microenvironment (TME), which affects the progression of LUAD from multiple molecular levels. However, the underlying molecular mechanisms behind LUAD hypoxia are not fully understood. In this study, we estimated the level of hypoxia by calculating a score based on 15 hypoxia genes. The hypoxia scores were relatively high in LUAD patients with poor prognosis and were bound up with tumour node metastasis (TNM) stage, tumour size, lymph node, age and gender. By comparison of high hypoxia score group and low hypoxia score group, 1820 differentially expressed genes were identified, among which up-regulated genes were mainly about cell division and proliferation while down-regulated genes were primarily involved in cilium-related biological processes. Besides, LUAD patients with high hypoxia scores had higher frequencies of gene mutations, among which TP53, TTN and MUC16 had the highest mutation rates. As for DNA methylation, 1015 differentially methylated probes-related genes were found and may play potential roles in tumour-related neurobiological processes and cell signal transduction. Finally, a prognostic model with 25 multi-omics features was constructed and showed good predictive performance. The area under curve (AUC) values of 1-, 3- and 5-year survival reached 0.863, 0.826 and 0.846, respectively. Above all, our findings are helpful in understanding the impact and molecular mechanisms of hypoxia in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Multiómica , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Hipoxia , Adenocarcinoma/genética , Microambiente Tumoral/genética
12.
J Environ Sci (China) ; 139: 23-33, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105051

RESUMEN

Lignin is a common soil organic matter that is present in soils, but its effect on the transformation of ferrihydrite (Fh) remains unclear. Organic matter is generally assumed to inhibit Fh transformation. However, lignin can reduce Fh to Fe(II), in which Fe(II)-catalyzed Fh transformation occurs. Herein, the effects of lignin on Fh transformation were investigated at 75°C as a function of the lignin/Fh mass ratio (0-0.2), pH (4-8) and aging time (0-96 hr). The results of Fh-lignin samples (mass ratios = 0.1) aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh, and the Fe(II)-accelerated transformation of Fh was strongly dependent on pH. Under pH 6, at low lignin/Fh mass ratios (0.05-0.1), the time of secondary mineral formation decreased with increasing lignin content. For high lignosulfonate-content material (lignin:Fh = 0.2), Fh did not transform into secondary minerals, indicating that lignin content plays a major role in Fh transformation. In addition, lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation. The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment.


Asunto(s)
Compuestos Férricos , Lignina , Oxidación-Reducción , Compuestos Férricos/química , Minerales/química , Suelo , Compuestos Ferrosos
13.
J Environ Sci (China) ; 139: 496-515, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105072

RESUMEN

Birnessite is ubiquitous in the natural environment where heavy metals are retained and easily transformed. The surface properties and structure of birnessite change with the changes in external environmental conditions, which also affects the fate of heavy metals. Clarifying the effect and mechanism of the birnessite phase transition process on heavy metals is the key to taking effective measures to prevent and control heavy metal pollution. Therefore, the four transformation pathways of birnessite are summarized first in this review. Second, the relationship between transformation pathways and environmental conditions is proposed. These relevant environmental conditions include abiotic (e.g., co-existing ions, pH, oxygen pressure, temperature, electric field, light, aging, pressure) and biotic factors (e.g., microorganisms, biomolecules). The phase transformation is achieved by the key intermediate of Mn(III) through interlayer-condensation, folding, neutralization-disproportionation, and dissolution-recrystallization mechanisms. The AOS (average oxidation state) of Mn and interlayer spacing are closely correlated with the phase transformation of birnessite. Last but not least, the mechanisms of heavy metals immobilization in the transformation process of birnessite are summed up. They involve isomorphous substitution, redox, complexation, hydration/dehydration, etc. The transformation of birnessite and its implication on heavy metals will be helpful for understanding and predicting the behavior of heavy metals and the crucial phase of manganese oxides/hydroxides in natural and engineered environments.


Asunto(s)
Manganeso , Metales Pesados , Manganeso/química , Adsorción , Metales Pesados/química , Óxidos/química , Compuestos de Manganeso/química , Oxidación-Reducción
14.
EMBO Mol Med ; 15(12): e17815, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37994307

RESUMEN

Efficient clearance of dying cells (efferocytosis) is an evolutionarily conserved process for tissue homeostasis. Genetic enhancement of efferocytosis exhibits therapeutic potential for inflammation resolution and tissue repair. However, pharmacological approaches to enhance efferocytosis remain sparse due to a lack of targets for modulation. Here, we report the identification of columbamine (COL) which enhances macrophage-mediated efferocytosis and attenuates intestinal inflammation in a murine colitis model. COL enhances efferocytosis by promoting LC3-associated phagocytosis (LAP), a non-canonical form of autophagy. Transcriptome analysis and pharmacological characterization revealed that COL is a biased agonist that occupies a part of the ligand binding pocket of formyl peptide receptor 2 (FPR2), a G-protein coupled receptor involved in inflammation regulation. Genetic ablation of the Fpr2 gene or treatment with an FPR2 antagonist abolishes COL-induced efferocytosis, anti-colitis activity and LAP. Taken together, our study identifies FPR2 as a potential target for modulating LC3-associated efferocytosis to alleviate intestinal inflammation and highlights the therapeutic value of COL, a natural and biased agonist of FPR2, in the treatment of inflammatory bowel disease.


Asunto(s)
Colitis , Ratones , Animales , Fagocitosis , Transducción de Señal , Inflamación/genética , Macrófagos/metabolismo , Colitis/metabolismo
15.
J Virol ; 97(11): e0071923, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37929962

RESUMEN

IMPORTANCE: African swine fever virus (ASFV) is a highly fatal swine disease that severely affects the pig industry. Although ASFV has been prevalent for more than 100 years, effective vaccines or antiviral strategies are still lacking. In this study, we identified four Bacillus subtilis strains that inhibited ASFV proliferation in vitro. Pigs fed with liquid biologics or powders derived from four B. subtilis strains mixed with pellet feed showed reduced morbidity and mortality when challenged with ASFV. Further analysis showed that the antiviral activity of B. subtilis was based on its metabolites arctiin and genistein interfering with the function of viral topoisomerase II. Our findings offer a promising new strategy for the prevention and control of ASFV that may significantly alleviate the economic losses in the pig industry.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Bacillus subtilis , Animales , Fiebre Porcina Africana/prevención & control , Antivirales/farmacología , ADN-Topoisomerasas de Tipo II/farmacología , Genisteína/farmacología , Porcinos
16.
Cell Discov ; 9(1): 101, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37794085

RESUMEN

Schistosoma parasites, causing schistosomiasis, exhibit typical host specificity in host preference. Many mammals, including humans, are susceptible to infection, while the widely distributed rodent, Microtus fortis, exhibits natural anti-schistosome characteristics. The mechanisms of host susceptibility remain poorly understood. Comparison of schistosome infection in M. fortis with the infection in laboratory mice (highly sensitive to infection) offers a good model system to investigate these mechanisms and to gain an insight into host specificity. In this study, we showed that large numbers of leukocytes attach to the surface of human schistosomes in M. fortis but not in mice. Single-cell RNA-sequencing analyses revealed that macrophages might be involved in the cell adhesion, and we further demonstrated that M. fortis macrophages could be mediated to attach and kill schistosomula with dependence on Complement component 3 (C3) and Complement receptor 3 (CR3). Importantly, we provided direct evidence that M. fortis macrophages could destroy schistosomula by trogocytosis, a previously undescribed mode for killing helminths. This process was regulated by Ca2+/NFAT signaling. These findings not only elucidate a novel anti-schistosome mechanism in M. fortis but also provide a better understanding of host parasite interactions, host specificity and the potential generation of novel strategies for schistosomiasis control.

17.
Chemosphere ; 344: 140310, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37775058

RESUMEN

The increase of metal mining, processing, and smelting activities has precipitated a substantial escalation in the contamination of soil by heavy metals. Ferrihydrite (FH) has been commonly used as an amendment for the immobilization of heavy metals in contaminated soil. However, FH suffers from drawbacks such as agglomeration and nonmigratory characteristics, which limit its practical application in soil remediation. Herein, a novel spent grain-modified ferrihydrite (FH-SG) colloidal system was developed, and the FH-SG transport mechanisms in the soil medium were fully studied, focusing in particular on the simultaneous in situ stabilization of arsenic (As), lead (Pb), and cadmium (Cd) in co-contaminated soil. The results showed that the stabilization rates of the FH-SG material reached 94.66%, 96.12%, and 95.52% for water-soluble As, Pb, and Cd, respectively, and 72.22%, 49.39%, and 25.30% for bioavailable As, Pb, and Cd, respectively. The FH-SG material demonstrates notable migration properties in porous media. Theoretical calculation results of a single collector show that the migration deposition of FH-SG material in media is primarily governed by its inherent diffusion characteristics with minimal influence by gravitational forces and media interception. It is noteworthy that the maximum migration distance in quartz sand and soil media with different particle sizes can reach 2.07-2.92 m and 0.78-1.08 m, respectively. Altogether, our findings clearly demonstrate that FH-SG exhibits better stabilization and migration than those of FH alone and most proposed FH colloidal systems. The FH-SG colloidal system holds significant promise for the remediation of various kinds of complex polluted soil.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Arsénico/análisis , Plomo , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Suelo , Grano Comestible/química
18.
Chemosphere ; 342: 140183, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37726061

RESUMEN

In this study, a novel slightly-soluble selenium (Se) fertilizer (SSF) was successfully applied to address the problems of Cd pollution in paddy soil and rice, and Se deficiency in human beings. The pot and field experiments showed that Cd content in the rice grains was reduced by 48.4%-82.89% and Se content was increased nearly by 30-fold comparing the control group. The application of SSF increased the soil pH and significantly reduced the DGT-extracted Cd in the soil. Moreover, DCB-extractable Fe content on the surface of roots was prompt by SSF, which formed a physical barrier, namely iron plaque (IP), to inhibit Cd translocation to the above-ground tissues of the rice plants. The Cd content in the IP was also decreased before the filling period, possibly contributing to the reduction in major Cd accumulation in the rice grains. In addition, the continuous Se increase and Cd reduction in the IP by the SSF gradually exceeded that of water-soluble Se during the three periods of rice plant growth. This suggests that SSF has high potential to be an effective Se fertilizer for inhibiting Cd uptake and enriching Se in rice.


Asunto(s)
Oryza , Selenio , Contaminantes del Suelo , Humanos , Selenio/farmacología , Selenio/química , Oryza/química , Cadmio/análisis , Fertilizantes/análisis , Suelo/química , Contaminantes del Suelo/análisis
20.
Adv Healthc Mater ; 12(28): e2301337, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625164

RESUMEN

Intervertebral disc degeneration (IDD) is a common cause of low back pain. Understanding its molecular mechanisms is the basis for developing specific treatment. To demonstrate that miR-22-3p is critical in the regulation of IDD, miRNA microarray analyses are conducted in conjunction with in vivo and in vitro experiments. The miR-22-3p knockout (KO) mice show a marked decrease in the histological scores. Bioinformatic analysis reveals that miR-22-3p plays a mechanistic role in the development of IDD by targeting SIRT1, which in turn activates the JAK1/STAT3 signaling pathway. This is confirmed by a luciferase reporter assay and western blot analysis. Therapeutically, the delivery of miR-22-3p inhibitors and mimics through the synthesized nanoparticles in the IDD model alleviates and aggravates IDD, respectively. The nanocarriers enhance transportation of miR-22-3p to nucleus pulposus cells, thus enabling the in vivo inhibition of miR-22-3p for therapeutic purposes and consequently promoting the development of miRNA-specific drugs for IDD.


Asunto(s)
Degeneración del Disco Intervertebral , MicroARNs , Núcleo Pulposo , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Transducción de Señal , Análisis por Micromatrices , Ratones Noqueados , Apoptosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...